pH-dependent evolution of five-star gold nanostructures: an experimental and computational study.
نویسندگان
چکیده
Dendritic structures, such as snowflakes, have been observed in nature in far-from-equilibrium growth conditions. Mimicking these structures at the nanometer scale can result in nanomaterials with interesting properties for applications, such as plasmonics and biosensors. However, reliable production and systematic fine-tuning morphologies of these nanostructures, with novel hierarchical or complex structures, along with theoretical understanding of these processes, are still major challenges in the field. Here, we report a new method of using pH to control HAuCl4 reduction by hydroxylamine for facile production of gold nanostructures with morphologies in various symmetries and hierarchies, both in solution and on solid surface. Of particular interest is the observation of five-star-like dendritic and hierarchical gold nanostructures under certain reaction conditions. Phase-field modeling was used to understand the growth and formation dynamics of the five-star and other gold complex nanostructures, and the results not only explained the experimental observations, but also predicted control of the nanostructural morphologies using both pH and hydroxylamine concentrations. In addition to revealing interesting growth dynamics in forming fascinating complex gold nanostructures, the present work provides a pH-directed morphology control method as a facile way to synthesize and fine-tune the morphology of hierarchical gold nanostructures.
منابع مشابه
Scaling relations in dynamical evolution of star clusters
We have carried out a series of small scale collisional N-body calculations of single-mass star clusters to investigate the dependence of the lifetime of star clusters on their initial parameters. Our models move through an external galaxy potential with a logarithmic density profile and they are limited by a cut-off radius. In order to find scaling relations between the lifetime of star cluste...
متن کاملComputational Study on Reduction Potential of [CoP4N2(OH2)2]2+ as a Super-Efficient Catalyst in Electrochemical Hydrogen Evolution
Hydrogen is considered as a unique choice for future world’s resources. The important parameter in the process of hydrogen production is the value of reduction potential for the used catalyst, in direct contact with consumed energy in process. The application of computational methods to design and modify molecular catalysts is highly regarded. This study sought to explore Density Functional...
متن کاملThe Anti-Proliferative and Anti-Angiogenic Effect of the Methanol Extract from Brittle Star
Background: Anti-angiogenic therapy is a crucial step in cancer treatment. The discovery of new anti-angiogenic compounds from marine organisms has become an attractive concept in anti-cancer therapy. Because little data correlated to the pro- and anti-angiogenic efficacies of Ophiuroidea, which include brittle star, the current study was designed to explore the anti-angiogenic potential of bri...
متن کاملStimuli-responsive Biosynthesis of Gold Nanoparticles: Optimization, Kinetics, and Thermodynamics of Biosorption
Green nanotechnology with the goal of producing sustainable nanomaterials in an eco-friendly approach is becoming an increasing necessity for nanomanufacturing industries. In this regards, biosynthesis is well adopted as a viable method for producing benign nanoparticles for biomedical application. The present study aimed at optimization and study of the effects of external stimuli pH and gold ...
متن کاملWires, plates, flowers, needles, and core-shells: diverse nanostructures of gold using polyaniline templates.
A simple and versatile method for the synthesis of a wide range of polyaniline (PANI)-based 1D and 2D gold nanostructures of uniform size distribution with high colloidal stability is demonstrated. All the nanostructures were synthesized from oligoaniline-coated gold nanoparticle precursors. The nanostructures include nanowires of various sizes, nanoplates, and flower-like nanoparticles. These ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- ACS nano
دوره 7 3 شماره
صفحات -
تاریخ انتشار 2013